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1. Introduction 

Newtonian mechanics is based on Newton’s laws of motion.  In many practical problems it becomes 

difficult to set up Newton’s equation and solve them particularly in the presence of constraints.  In such 

cases an alternative formalism in needed to simplify the analysis of the system.  In this unit we would 

discuss one such alternative formalism based on D’Alembert’s Principle.  In this context we will first 

introduce the concept of Virtual work. 

 

2. Principle of virtual work 

Let a system of N particle is specified by the coordinates  𝒓𝒊 .  Virtual displacement is defined as 

an imaginary infinitesimal displacement  𝛿𝒓𝒊  at a fixed given time t while the displacement satisfies the 

constraints and the generalized velocities  𝑞 𝑘   are kept fixed at time t.  The virtual displacements when 

represented in generalized coordinates automatically satisfy the constraints.  The relation between the 

infinitesimal displacement of the generalized coordinates and the virtual displacement is given by  

𝛿𝒓𝒊 =  
𝜕𝒓𝒊
𝜕𝑞𝒋

𝛿𝑞𝑗
∆ 

                                                                    (2.1) 

Let 𝑭𝒊  be the external applied force and the force of constraints on the ith particle.  As the system 

is in equilibrium the virtual work which is defined as the work done as the system by all the forces that 

act on the system as the system undergoes virtual displacement  𝛿𝒓𝒊  is  

𝛿𝑊 =  𝑭𝒊

𝑖

∙ 𝛿𝒓𝒊                                                                       (2.2) 

where 

𝑭𝒊 = 𝑭𝒊
𝐚𝐩𝐩

+ 𝑭𝒊
𝒄𝐨𝐧𝐬𝐭 

We now restrict ourselves to systems for which the net virtual work done by the constraint forces 

is zero  i.e. 

 𝑭𝒊
𝒄𝐨𝐧𝐬𝐭

𝑖

∙ 𝛿𝒓𝒊 = 0                                                                (2.3) 

Therefore the virtual work done on the system is given by  

𝛿𝑊 =  𝑭𝒊
𝐚𝐩𝐩

𝑖

∙ 𝛿𝒓𝒊                                                                         (2.4) 

Thus the total virtual work done on the system is only by the applied forces.  This is the ‘principle 

of virtual work’. 

3. d’Alembert’s Principle 

The total force acting on a particle is the sum of applied and constraint forces.  The virtual work done by 

the constraint forces is zero and therefore, as we saw, the virtual work done on the system is  
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3. d’Alembert’s Principle 

The total force acting on a particle is the sum of applied and constraint forces.  The virtual work done by 

the constraint forces is zero and therefore, as we saw, the virtual work done on the system is  

𝛿𝑊 =  𝑭𝒊

𝑖

∙ 𝛿𝒓𝒊 

Where we have dropped the superscript ‘applied’ from the force.  From Newton’s second law of motion 

rate of change of momentum of a particle is equal to the applied force.  Thus 

𝑭𝒊 =
𝑑𝒑𝒊

𝑑𝑡
= 𝒑 𝒊                                                                     (2.5) 

We then have 

𝛿𝑊 =  𝒑 𝒊 ∙ 𝛿𝒓𝒊                                                                    (2.6) 

and  

  𝑭𝒊 − 𝒑 𝒊 

𝑖

∙ 𝛿𝒓𝒊 = 0                                                                (2.7) 

This is the d’Alembert’s Principle.  It says that the rate of change of momentum is determined only by the 

non-constraint forces.  The principle can be generalized to relate the generalized forces to the rate of 

change of momenta.  In  terms of generalized coordinates, we have 

𝛿𝑊 =  𝑇𝑗
𝑗

𝛿𝑞𝑗 =  𝒑 𝒊
𝑖

∙ 𝛿𝒓𝒊 =  𝒑 𝒊
𝑖𝑗

𝜕𝒓𝒊
𝜕𝑞𝑗

𝛿𝑞𝑖                                (2.8) 

where the generalized  for  

ℑ𝑗 =  𝑭𝒊

𝑖𝑗

∙
𝜕𝒓𝒊
𝜕𝑞𝑗

=
𝛿𝑊

𝛿𝑞𝑗
=  𝒑 𝒊

𝑖𝑗

∙
𝜕𝒓𝒊
𝜕𝑞𝑗

                                       (2.9) 

In equation (2.8) and (2.9) above in runs over from 1 to N and j from 1 to 3N-k. 

Thus the generalized force on the jth particle can be calculated from the non-constraint applied force 

alone. 

4. Lagrange’s Equation of Motion 

The kinetic energy T of a dynamical system is defined as 

𝑇 ≡
1

2
 𝑚𝑖

𝑖

𝒓 𝒊 ∙ 𝒓 𝒊 = 𝑇 𝛿𝑞𝑗  𝑞 𝑗  ; 𝑡                                                (2.10) 
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In equation (2.8) and (2.9) above in runs over from 1 to N and j from 1 to 3N-k. 

Thus the generalized force on the jth particle can be calculated from the non-constraint applied force 

alone. 

4. Lagrange’s Equation of Motion 

The kinetic energy T of a dynamical system is defined as 

𝑇 ≡
1

2
 𝑚𝑖

𝑖

𝒓 𝒊 ∙ 𝒓 𝒊 = 𝑇 𝛿𝑞𝑗  𝑞 𝑗  ; 𝑡                                                (2.10) 

This functional relationship of T can be seen by remembering that the position coordinate 𝒓𝒊 can be 

written in terms of generalized coordinates and 𝒓 𝒊 is obtained by the total derivative of 𝒓 𝒊 with time and is 

a function of 𝑞 𝑗 .  We can thus write the partial derivative of T as  

𝜕𝑇

𝜕𝑞𝑗
=  𝑚𝑖

𝑖

𝜕𝒓 𝒊
𝜕𝑞𝑗

=  𝒑 𝒊
𝑖

∙
𝜕𝒓 𝒊
𝜕𝑞𝑗

                                                    (2.11) 

𝜕𝑇

𝜕𝑞 𝑗
=  𝑚𝑖𝒓 𝒊 ∙

𝑖

𝜕𝒓 𝒊
𝜕𝑞 𝑗

=  𝒑 𝒊
𝑖

∙
𝜕𝒓 𝒊
𝜕𝑞𝑗

                                                  (2.12) 

This happens because  

𝜕𝒓 𝒊
𝜕𝑞𝑗

=
𝜕𝒓 𝒊
𝜕𝑞0

                                                                         (2.13) 

Which can be easily proved by voting that  

𝛿𝒓 𝒊 =  𝒑 𝒊
𝑗

∙
𝜕𝒓 𝒊
𝜕𝑞𝑗

𝛿𝑞𝑗                                                             (2.14) 

Now 

𝒓 𝒊 =  
𝜕𝒓 𝒊
𝜕𝑞 𝑗

𝑖

𝑑𝑞𝑖
𝑑𝑡

+
𝜕𝒓𝒊
𝜕𝑡

                                                                        (2.15) 

Taking the partial derivative w.r.t. 𝑞 𝑘  

𝜕𝒓 𝒊
𝜕𝑞 𝑘

=  
𝜕𝒓𝒊
𝜕𝑞𝑗

𝑖

𝛿𝑗𝑘 =
𝜕𝒓 𝒊
𝜕𝑞𝑘

                                                                                       (2.16) 

Differentiating equ. (2.12) w.r.t., we get 

                                           
𝑑

𝑑𝑡
 
𝜕𝑇

𝜕𝑞 𝑗
 =  𝒑 𝒊𝑖 ∙

𝜕𝒓𝒊

𝜕𝑞𝑗
+  𝒑 𝒊𝑖 ∙

𝑑

𝑑𝑡
 
𝜕𝒓𝒊

𝜕𝑞𝑗
                                                            2.17    
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Differentiating eqn. (2.12) w.r.t., we get 

                                           
𝑑

𝑑𝑡
 
𝜕𝑇

𝜕𝑞 𝑗
 =  𝒑 𝒊𝑖 ∙

𝜕𝒓𝒊

𝜕𝑞𝑗
+  𝒑 𝒊𝑖 ∙

𝑑

𝑑𝑡
 
𝜕𝒓𝒊

𝜕𝑞𝑗
                                                            2.17    

The first term can be identified as the generalized forces 𝐹𝑗  acting on the jth particle.  In the second term, 

we have 

𝑑

𝑑𝑡
 
𝜕𝒓𝒊
𝜕𝑞𝑗

 =  
𝜕

𝜕𝑞𝑘
𝑘

 
𝜕𝒓𝒊
𝜕𝑞𝑗

 𝑞 𝑘 +
𝑑

𝑑𝑡
 
𝜕𝒓𝒊
𝜕𝑞𝑗

    

=   
𝜕

𝜕𝑞𝑗
  

𝜕𝒓𝒊
𝜕𝑞𝑘

𝑘

𝑞 𝑘 +
𝜕𝒓𝒊
𝜕𝑡

  =   
𝜕𝒓 𝒊
𝜕𝑞𝑗

                                  (2.18) 

∴
𝑑

𝑑𝑡
 
𝜕𝑇

𝜕𝑞 𝑗
 =

𝜕𝑇

𝜕𝑞𝑗
+ 𝐹𝑗  

We thus have the generalized equation of motion 

𝑑

𝑑𝑡
 
𝜕𝑇

𝜕𝑞 𝑗
 −

𝜕𝑇

𝜕𝑞𝑗
= 𝐹𝑗                                                         (2.19) 

If we now specialize to conservative forces that is the forces that can be obtained from a potential 

function U. 

𝐹𝑣 = −𝛁𝑖𝑈  𝒓𝑘                                                           (2.20) 

The generalized force 

𝐹𝑗 =  𝑭𝒊

𝑖

∙
𝜕𝒓𝒊
𝜕𝑞𝑗

=  −

𝑖

𝛁𝑖𝑈  𝒓𝑘  ∙
𝜕𝒓𝒊
𝜕𝑞𝑗

 

𝐹𝑗 = −
𝜕𝑈  𝑞𝑘 , 𝑡 

𝜕𝑞𝑗
                                                          (2.21) 

The generalized equation of motion obtained by using d’Alembert’s Principle expressed in generalized 

coordinates is given by 

𝑑

𝑑𝑡
 
𝜕𝑇

𝜕𝑞 𝑘
 −

𝜕𝑇

𝜕𝑞𝑘
= −

𝜕𝑈

𝜕𝑞𝑘
                                                         (2.22) 
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Define the Lagrangian 

𝐿 = 𝑇 − 𝑈                                                                                 (2.23) 

For holonomic constraints we have  

𝜕𝑈

𝜕𝑞 𝑘
= 0 

This allows us to write the above equation in terms of the Lagrangian as  

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞 𝑘
 −

𝜕𝐿

𝜕𝑞𝑘
= 0                                                            (2.24) 

This is the Euler – Lagrange Equation for each generalized coordinates 𝑞𝑘  . 

5.  Time and velocity dependent Potentials: 

In defining the Lagrangian we confined ourselves to potential energy which is time independent.  

We may have situations where the potential energy even though depends on time but is conservative at 

each instant of time a for example in the case of planetary motion about the centre of mass.  If the 

potential is velocity dependent the Euler-Lagrange equations may not hold in  general.  In case we have 

generalized force that can be written in terms of velocity dependent potentials called generalized potential 

energy 𝑈  𝑞𝑘 ,  𝑞 𝑗    through 

𝐹𝑗 = −
𝜕𝑈

𝜕𝑞𝑗
+

𝑑

𝑑𝑡
 
𝜕𝑈

𝜕𝑞 𝑗
                                                      (2.25) 

The Euler – Lagrange equations still hold for 𝐿 = 𝑇 − 𝑈.  𝑈 defined in this way is not the 

potential energy in the conventional sense of being   the work done by a generalized force. That, it cannot 

be calculated from the line integral of the generalized force but still allows us to use the concept of 

Lagrangian to obtain the Euler-Lagrange equations of motion.  As an example of velocity dependent 

force, we will take the example of Lorentz force on a charged particle and obtain the corresponding 

Lagrange equation. 
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Lorentz-force Equation: 

The equation of motion of a charged particle of mass m and charge q in the presence of electro – magnetic 

field is given by 

𝑚
𝑑2𝒓

𝑑𝑡2
= 𝑞  𝑬 +

1

𝐶
𝑽 × 𝑩                                                        (2.26) 

where 𝑽 is the velocity of the particle.  The electric and magnetic fields can be expressed in terms 

of scalar potential  and the vector potential A through the well known relations from the study of 

electricity and magnetism. 

𝑬 = −𝛁𝜙 −
1

𝐶

𝜕𝑨

𝜕𝑡
                                                                 (2.27) 

and  

𝑩 = 𝐶𝑢𝑟𝑙𝑨                                                                                (2.28) 

In terms of X component of the force, equ. (2.26) can be written as  

𝑚𝑥 = 𝑞  𝐸𝑥 +
1

𝐶
 𝑽 × 𝑩 𝒙  

= 𝑞  −
𝜕𝜙

𝜕𝑥
−

1

𝐶

𝜕𝐴𝑥

𝜕𝑡
+

1

𝐶
 𝑽 ×  𝛁 × 𝑩  

𝒙
               (2.29) 

The x-component of −𝑽 ×  𝛁 × 𝑩  is given by  

 𝑽 ×  𝛁 × 𝑨  
𝒙

= 𝜈𝒚  
𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥

𝜕𝑦
 − 𝝂𝒛  

𝜕𝐴𝑥

𝜕𝑧
−
𝜕𝐴𝑧

𝜕𝑥
  

Thus 

𝑚𝑥 = 𝑞  −
𝜕𝜙

𝜕𝑥
−

1

𝐶

𝜕𝐴𝑥

𝜕𝑡
+

1

𝐶
 𝜈𝒚  

𝜕𝐴𝑦

𝜕𝑥
−
𝜕𝐴𝑥

𝜕𝑦
 − 𝝂𝒛  

𝜕𝐴𝑥

𝜕𝑧
−
𝜕𝐴𝑧

𝜕𝑥
             (2.30) 

Since vector potential depend on the coordinates and time i.e. 

𝑨 = 𝑨 𝑥, 𝑦, 𝑧, 𝑡  

We have  

1

𝐶

𝑑𝐴𝑥

𝑑𝑡
=

1

𝐶

𝜕𝐴𝑥

𝜕𝑡
+

1

𝐶
 𝜈𝒙

𝜕𝐴𝑥

𝜕𝑥
+ 𝜈𝒚

𝜕𝐴𝑦

𝜕𝑦
+ 𝜈𝑧

𝜕𝐴𝑥

𝜕𝑧
                           (2.31) 

And substracting 𝜈𝒙
𝜕𝐴𝑥

𝜕𝑥
  substituting for 

𝜕𝐴𝑥

𝜕𝑡
 in (2.29) from (2.30), and adding we get  

𝑚𝑥 = 𝑞  −
𝜕𝜙

𝜕𝑥
−

1

𝐶

𝜕𝐴𝑥

𝜕𝑡
+

1

𝐶
 𝜈𝒙

𝜕𝐴𝑥

𝜕𝑥
+ 𝜈𝒚

𝜕𝐴𝑦

𝜕𝑦
+ 𝜈𝑧

𝜕𝐴𝑥

𝜕𝑧
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And substracting 𝜈𝒙
𝜕𝐴𝑥

𝜕𝑥
  substituting for 

𝜕𝐴𝑥

𝜕𝑡
 in (2.29) from (2.30), and adding we get  

𝑚𝑥 = 𝑞  −
𝜕𝜙

𝜕𝑥
−

1

𝐶

𝜕𝐴𝑥

𝜕𝑡
+

1

𝐶
 𝜈𝒙

𝜕𝐴𝑥

𝜕𝑥
+ 𝜈𝒚

𝜕𝐴𝑦

𝜕𝑦
+ 𝜈𝑧

𝜕𝐴𝑥

𝜕𝑧
    

= 𝑞  −
𝜕𝜙

𝜕𝑥
−

1

𝐶

𝜕𝐴𝑥

𝜕𝑡
+

1

𝐶
𝑽 ∙

𝜕𝑨

𝜕𝑥
  

= 𝑞  −
𝜕

𝜕𝑥
 𝜙 −

1

𝐶
𝑽 ∙ 𝑨 +

𝑑

𝑑𝑡

𝜕

𝜕𝑣𝑥
 𝜙 −

1

𝐶
𝑽 ∙ 𝑨               (2.32) 

In deriving the above equation we have used  
𝜕𝑽

𝜕𝑥
= 0 as velocity does not depend on x explicitly 

and  
𝜕𝜙

𝜕𝑣𝑥
= 0 because 𝜙 is a function of 𝑥 , 𝑦, 𝑧, 𝑡 only and  

𝑑

𝑑𝑡
 𝑽 ∙ 𝑨 =

𝑑𝐴𝑥

𝑑𝑡
 

We can thus write 

𝐹𝑥 = 𝑚𝑥 = −
∂U

∂𝑥
+

𝑑

𝑑𝑡

𝜕𝑈

𝜕𝑣𝑥
                                                  (2.32) 

Where 

𝑈 = 𝑞  𝜙 −
1

𝐶
𝑽 ∙ 𝑨                                                            (2.33) 

Is a kind of generalized velocity dependent potential and the Lagrangian of the charged particle in 

the presence of electro-magnetic fields is given by  

𝐿 = 𝑇 − 𝑞  𝜙 −
1

𝐶
𝑽 ∙ 𝑨                                                   (2.34) 
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Example : We will illustrate this with the help of a suitable example.  A particle of mass m is 

constrained to move under gravity on an elliptical wire in the x-y plane. 

The constraint equation is   

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 

Which can be parameterized by 𝑥 = 𝑎 cos𝜃 and 𝑦 = 𝑏 sin𝜃.  Since 𝑥 and 𝑦 are related, let us 

choose the generalized coordinate to be 𝜃.  In terms of generalized coordinate the kinetic energy 

𝑇 =
1

2
𝑚 𝑥 2 + 𝑦 2 =

1

2
𝑚 𝑎2 sin2 𝜃 𝜃 2 + 𝑏2 cos2 𝜃 𝜃 2  

The potential energy 𝑈 = 𝑚𝑔𝑦 = 𝑚𝑔𝑏 sin𝜃. 

 

 

 

 

 

 

 

 

 

 

 

The equation of motion is given by 

𝑑

𝑑𝑡
 
𝜕𝑇

𝜕𝜃 
 −

𝜕𝑇

𝜕𝜃
= 𝑓𝜃 =

𝜕𝑈

𝜕𝜃
 

𝜕𝑇

𝜕𝜃 
=

1

2
𝑚 𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃 2𝜃  

 

X 

 

  

Y 
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𝜕𝑇

𝜕𝜃
= 𝑚𝜃 2 𝑎2 sin𝜃 cos𝜃 − 𝑏2 sin𝜃 cos𝜃      

= 𝑚 sin𝜃 cos𝜃  𝑎2 − 𝑏2 𝜃 2                  

Thus the equation of motion is  

𝑚𝜃  𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃 = −𝑚𝑔𝑏 cos𝜃 

𝜃 = −𝑔
𝑏 cos𝜃

𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃
 

For a circular wire 𝑎 = 𝑏 = 𝑟 

𝜃 = −𝑔
cos𝜃

𝑟
 

 

 

 

 

6. Summary: 

 For conservative systems, generalized force can be obtained from the potential energy 

function expressed in terms of generalized coordinates as 

𝑓𝑗 = −
𝜕𝑈  𝑞𝑘 , 𝑡 

𝜕𝑞𝑗
 

 d’Alembert’s Principle states that the rate of change of momentum is determined only by 

the non-constraint forces. 

 

 


