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d‘Alembert’s Principle and Lagrange’s Equations
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6. Summary
1. Learning Objectives :

+ Learn about a formalism in mechanics based on d’ Alembert’s Principle.
¢+ You will learn that this formalism is particularly convenient for constrained systems.

Classical Mechanics

Physics




— the constraint forces is zero and therefore, as we saw, the virtual work done on the system is

f“ athshala
Q@cﬂzanm

1. Introduction

Newtonian mechanics is based on Newton’s laws of motion. In many practical problems it becomes
difficult to set up Newton’s equation and solve them particularly in the presence of constraints. In such
cases an alternative formalism in needed to simplify the analysis of the system. In this unit we would
discuss one such alternative formalism based on D’Alembert’s Principle. In this context we will first
introduce the concept of Virtual work.

2. Principle of virtual work

Let a system of N particle is specified by the coordinates {r;}. Virtual displacement is defined as
an imaginary infinitesimal displacement {5r;} at a fixed given time t while the displacement satisfies the
constraints and the generalized velocities {q,} are kept fixed at time t. The virtual displacements when
represented in generalized coordinates automatically satisfy the constraints. The relation between the
infinitesimal displacement of the generalized coordinates and the virtual displacement is given by

ari
6r,~ =

=Y —6q; 2.1

Let F; be the external applied force and the force of constraints on the ith particle. As the system
is in equilibrium the virtual work which is defined as the work done as the system by all the forces that
act on the system as the system undergoes virtual displacement {é1;} is

SW = Z F;- or; 2.2)
i

where
_ ;app t
F;=F;" + Fiors

We now restrict ourselves to systems for which the net virtual work done by the constraint forces
is zero i.e.

z F5omst . 57, = 0 2.3)
i

Therefore the virtual work done on the system is given by

SW = z FPP - 61 (2.4)
i

Thus the total virtual work done on the system is only by the applied forces. This is the ‘principle
of virtual work’.

3. d’Alembert’s Principle 4

The total force acting on a particle is the sum of applied and constraint forces. The virtual work done by
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3. d’Alembert’s Principle

The total force acting on a particle is the sum of applied and constraint forces. The virtual work done by
the constraint forces is zero and therefore, as we saw, the virtual work done on the system is

6W=ZF,--6ri
i

Where we have dropped the superscript ‘applied’ from the force. From Newton’s second law of motion
rate of change of momentum of a particle is equal to the applied force. Thus

F;= % = Pi (2.5)
We then have
sW = Z P o1 (2.6)
and
D (Fi=p)- o1 =0 @7
i

This is the d’Alembert’s Principle. It says that the rate of change of momentum is determined only by the
non-constraint forces. The principle can be generalized to relate the generalized forces to the rate of
change of momenta. In terms of generalized coordinates, we have

5W=ZTJ-6qJ-=Zpi-6ri=ng—26qi 28)
j i ]
where the generalized for
5j=ZFi'%=5—W=ZPr% (2.9)

In equation (2.8) and (2.9) above in runs over from 1 to N and j from 1 to 3N-k.

Thus the generalized force on the jth particle can be calculated from the non-constraint applied force
alone.

4. Lagrange’s Equation of Motion

The kinetic energy T of a dynamical system is defined as 5

1
= EZ m, - = T(8g;{q; i) (2.10)
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In equation (2.8) and (2.9) above in runs over from 1 to N and j from 1 to 3N-k.

Thus the generalized force on the jth particle can be calculated from the non-constraint applied force
alone.

4. Lagrange’s Equation of Motion

The kinetic energy T of a dynamical system is defined as
1 . .

This functional relationship of T can be seen by remembering that the position coordinate r; can be
written in terms of generalized coordinates and 7; is obtained by the total derivative of #; with time and is
a function of g;. We can thus write the partial derivative of T as

—_— m — e .
aq, - ‘dq; - Pi aq;
aT
o= Y miy a Zpl - (212)
qj ; q]
This happens because
o1y _ OT (2.13)
aq]' aqq '

Which can be easily proved by voting that

. Ory
= b —Lag, (2.14)
- q;
j
Now
. drydq;  Ory
r;= aq} dt + E (215)
Taking the partial derivative w.r.t. g
04~ Ladg; 7*  agy '
Differentiating equ. (2.12) w.r.t., we get
d 0ri
dt ( ) Zl l aq Zl l dt (aq]) (2'17)
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Differentiating egn. (2.12) w.r.t., we get

d (ot ar;

(o) = Zipe 2+ Tibe 5 (52 217)

The first term can be identified as the generalized forces F; acting on the jth particle. In the second term,
we have
<6rl> Z <6r,) . d <6ri>
t\9gq; dq, \9q; dt\dq;
_ 0 61',- - ari g arl (2 18)
0q; \ £ 94 T 5t 3q; '

L d(ary_or

We thus have the generalized equation of motion

d (aT oT r 219

dt\dgq;) dq; "’ (2.19)

If we now specialize to conservative forces that is the forces that can be obtained from a potential
function U.

F, = =V;U({r}) (2.20)

The generalized force

ari ari
Fj—zFi a—q]_—Z—ViU({Tk}) 3
4

. aU({Qk}: t)

2.21
e (221)

N>

The generalized equation of motion obtained by using d’Alembert’s Principle expressed in generalized
coordinates is given by
d <6T) or  dU

Ry S 2.22
a\a3,) 90 = a4, (2.22)
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Define the Lagrangian
L=T-U (2.23)
For holonomic constraints we have
ou 0
04
This allows us to write the above equation in terms of the Lagrangian as
d <6L ) oL 0 224
dt\daq,/) dq, (2.24)

This is the Euler — Lagrange Equation for each generalized coordinates g;, .
5. Time and velocity dependent Potentials:

In defining the Lagrangian we confined ourselves to potential energy which is time independent.
We may have situations where the potential energy even though depends on time but is conservative at
each instant of time a for example in the case of planetary motion about the centre of mass. If the
potential is velocity dependent the Euler-Lagrange equations may not hold in general. In case we have
generalized force that can be written in terms of velocity dependent potentials called generalized potential

energy U ({qy}, {g;}).through

-2V, 2 (Y 2.25
] 7 aq; " dt\ag; (2.25)

The Euler — Lagrange equations still hold for L =T — U. U defined in this way is not the
potential energy in the conventional sense of being the work done by a generalized force. That, it cannot
be calculated from the line integral of the generalized force but still allows us to use the concept of
Lagrangian to obtain the Euler-Lagrange equations of motion. As an example of velocity dependent
force, we will take the example of Lorentz force on a charged particle and obtain the corresponding
Lagrange equation.
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Lorentz-force Equation:

The equation of motion of a charged particle of mass m and charge q in the presence of electro — magnetic
field is given by

dzr _ 1
m——= [E+ v x B (2.26)

where V is the velocity of the particle. The electric and magnetic fields can be expressed in terms
of scalar potential and the vector potential A through the well known relations from the study of
electricity and magnetism.

E=-V$——— (2.27)

and
B = CurlA (2.28)

In terms of X component of the force, equ. (2.26) can be written as

mX =q [Ex “ %(V X B)x]

dp 104,
=q[____

lvxwxp 2.29
ox car TeVx@x ))x] (2.29)

The x-component of —V x (V x B) is given by

04, an> B (an 3 6AZ)

Wx(vxm)fvy(%‘ dy 9z ox

Thus

. _[_09_10a, 1( (04, o4, (an aAZ) 20
M=o Tcac e\ ax "oy ) TV ez T ox (230)

Since vector potential depend on the coordinates and time i.e.

A=A(xy,21t)
We have
1dAx_16Ax+1 94, ) 6Ay+ 94, 531
car ~ca to\"ar Ty Y, (2:31)
And substracting Vx - 9
- A 1an+1 dA, N 94, N 9A,
M=y =T ot "¢\ 0% Vyay Vs
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And substracting Vx .
[ 9 1an+1 04, 94y 04,
mi=q|-o-— =t o\ Ve gy VYay Vzaz
_ [L20 104, 1 04
- [ ox C ot C dx
—q a< ! A)+da( 1VA)] 232
=qm5\ PV Gan \? T @32

In deriving the above equation we have used Z—: = 0 as velocity does not depend on x explicitly

and % = 0 because ¢ is a function of x , y, z, t only and

X

d W-a)= dA,

dt T odt
We can thus write

E, =mi= 6U+daU 2.32

== Tk dt 0v, (232)
Where

1
U=q(¢—EV-A) (2.33)

Is a kind of generalized velocity dependent potential and the Lagrangian of the charged particle in
the presence of electro-magnetic fields is given by

L=T—q(¢—%V-A> (2.34)
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Example : We will illustrate this with the help of a suitable example. A particle of mass m is
constrained to move under gravity on an elliptical wire in the x-y plane.

The constraint equation is

Which can be parameterized by x = acos 6 and y = bsinf. Since x and y are related, let us
choose the generalized coordinate to be 6. In terms of generalized coordinate the kinetic energy

1 1 . .
T = Em(a’cz +y?%) = Em(a2 sin® 0 62 + b? cos? 6 62)

The potential energy U = mgy = mgb sin 8.

The equation of motion is given by

d (GT) or . au
TACT A Tk T,
aT 1 .
— = —m(a?sin® 6 + b? cos? 0)26
08 2

11
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oT

28" m62(a?sin @ cos O — b2 sin O cos )

= msin@ cos 6 (a? — b?)H?
Thus the equation of motion is
mé(a?® sin® @ + b? cos® §) = —mgb cos 6

b cos @
a?sinZ 0 + b2 cos2 6

6=—g

For a circular wirea=b =r

6. Summary:

<> For conservative systems, generalized force can be obtained from the potential energy
function expressed in terms of generalized coordinates as
_0U{qk}t)
fi = T aq
< d’Alembert’s Principle states that the rate of change of momentum is determined only by
the non-constraint forces.
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